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o New technologies enable the gathering of large datasets.
@ Two main statistical challenges

o Volume: High dim. data = models with more parameters

o Variety: Data are often not collected all at once but in batches/studies
@ GOAL: Combine multiple studies into a single analysis
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@ Showing that these issues are practically-relevant in cancer genomics.

Q A flexible Bayesian factor regression model to integrate large datasets,
jointly learning batch and covariate effects and sparse low-rank
covariances.
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Solution

A sparse latent factor regression model to integrate heterogeneous data
Factor analysis + factor regression + sparsity + batch effect correction

Contributions:

@ Showing that these issues are practically-relevant in cancer genomics.

Q A flexible Bayesian factor regression model to integrate large datasets,
jointly learning batch and covariate effects and sparse low-rank
covariances.

© A novel and scalable non-local prior based formulation to induce

sparsity and learn the number of factors. The first adaptation of
non-local priors to factor models.

@ A scalable EM algorithm with closed-form updates to obtain Mode a
Posteriori (MAP) estimates and an R implementation publicly
available https://github.com/AleAviP/BFR.BE.
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Large scale projects:
@ The Cancer Genome Atlas (TCGA),
@ Cancer Genome Project (CGP)

@ International Cancer Genome Consortium (ICGC)

1
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T

o Edefonti et al (2012) stack all the studies in one data-set
()T, )T
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@ Perform factor analysis
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@ Goal: Given X € R"™P obtain F € R™9, g << p
o Model: x; = ¢f; + e
fi ~ N(0,1)
e | T ~ N(,T71)
Xj | fi7¢7TN N(¢ﬁaT_1) o
xi | &, T ~ N0, g™ +T 1)
o MLE, optimise: log p(X|o,T)

¢ and T do not have a
closed-form.




. f‘. Harvard-MIT Center
Factor analysis ’J for Regulatory Science

@ Goal: Given X € R"™P obtain F € R™9, g << p
o Model: x; = ¢f; + e
fi ~ N(0,1)
e | T ~ N(,T71)
Xj | fi7¢7TN N(¢th—1) o
xi | &, T ~ N0, g™ +T 1)
o MLE, optimise: log p(X|o,T)

¢ and T do not have a
closed-form.

o When 71 = 52/, we recover PPCA and PCA when 7! =0

X1



. f‘. Harvard-MIT Center
Factor analysis ’J for Regulatory Science

@ Goal: Given X € R"™P obtain F € R™9, g << p
o Model: x; = ¢f; + e
fi ~ N(0,1)
e | T ~ N(,T71)
Xj | fi7¢7TN N(¢th—1) o
x| ¢, T ~ N(0,¢¢" +T 1)
o MLE, optimise: log p(X|o,T)

¢ and T do not have a
closed-form.

o When 71 = 52/, we recover PPCA and PCA when 7! = 0.

o Problem: Provides limited flexibility to account for systematic biases
or sources of variation that are not of interest

X1
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Batch effects are non-biological experimental variation

@ Arise when data are generated under different experimental
conditions.

@ Are inevitable and can lead to incorrect conclusions when combining
data without adjusting for it.

@ Account for a large part of the covariance and thus have a strong
effect on the solution, limiting our ability to see biological patterns of
interest.

+ batch 1
o o * batch2
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Bayesian factor regression with batch effect correction:
o Model: x; = ¢f; + 0v; + Sb; + ¢

0 € RP*Pv: regression coefficients

B € RP*P>: additive batch effects

v; € RPv: observed covariates

b € {0,1}Pe: batch indicators

i~ N0, 7 1), 75 the j idiosyncratic precision element in batch s.

2Avalos-Pacheco A. , Rossell D. , Savage R. S. , (2020+) arXiv
" AvalosPacheco | Crossstudy Bayesian factor regression ~~ July 9th, 2020  9/30 |
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Bayesian factor regression with batch effect correction:
o Model: x; = ¢f; + 0v; + Sb; + ¢

0 € RP*Pv: regression coefficients

B € RP*P>: additive batch effects

v; € RPv: observed covariates

b € {0,1}Pe: batch indicators

i~ N0, 7 1), 75 the j idiosyncratic precision element in batch s.

° Priors

o ldiosyncratic precisions: 7 | n,& ~ Gamma(n/2,n¢/2)
o Regression parameters: (6;, 3;) ~ N(0, )

2Avalos-Pacheco A. , Rossell D. , Savage R. S. , (2020+) arXiv
" AvalosPacheco | Crossstudy Bayesian factor regression ~ July 9th, 2020  9/30 |
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Bayesian factor regression with batch effect correction model

¢f; + Ov; + Bb; + e;
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Flat priOF on the Ioadings ’J for Regulatory Science
Bayesian factor regression with batch effect correction model
x; = ¢f; +6vi+ Bbi +e; }

v/ Enables a more complete understanding of multi-study data.
v/ Corrects mean and variance batch effects.
v EM algorithm is able to effectively estimate and remove such biases.

X Dimension of latent factors needs to be specified.
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3George and McCulloch (1993) Journal of the American Statistical Association
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P(djk | 75 A0, A1) = (1 = vk )P(Djk | Ao, ik = 0) + Yjkp(Pjic | A1, vjk = 1)
+ Normal-spike-and-slab 3
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3George and McCulloch (1993) Journal of the American Statistical Association
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v/ Enables a more complete understanding of multi-study data.

v/ Corrects mean and variance batch effects.

v EM algorithm is able to effectively estimate and remove such biases.

v/ Dimension of the latent factors is learned

v/ Discriminates the important (slab), from the ignorable factors (spike).

X Slab prior assigns non-negligible positive probability to regions
consistent with null hypotheses.

P(@l)
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P(djk | ¥, Ao, A1) = (1 — vjk)P(Pjic | Aosvjk = 0) + vjP(Pjic | A1, 7k = 1)
* Normal-spike-and-slab

*Johnson V. E., Rossell, D., (2010) Journal of the Royal-Statistical Society Series B
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P(Bjk | 7, Ao, A1) = (1 — vk )P(jk | Aos vik = 0) + vikp(@jk | A1, vjk = 1)
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P(Bjk | 7, Ao, A1) = (1 — vk )P(jk | Aos vik = 0) + vikp(@jk | A1, vjk = 1)
* Normal-spike-and-slab
% Normal-spike-and-MOM-slab 4

Non-local priors

An absolutely continuous measure with density p(¢jc | vk = 1) is a
non-local prior if limg, 0 p(djk | Yk = 1) = 0.

*Johnson V. E., Rossell, D., (2010) Journal of the Royal-Statistical Society Series B
" Avalos-Pacheco | Crossstudy Bayesian factor regression ~ July 9th, 2020  13/30
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prior densities inclusion probabilities
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Indian buffet process (IBP) prior °

r - {’Y_/k}J k=1

®Griffiths and Ghahramani (2005) Technical report, Gatsby Computational
Neuroscience Unit

®Rotkovd, V., George, E. I., (2016, 2014) Journal of the American Statistical
Association
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Indian buffet process (IBP) prior °

M= {’ij}, k=1
Beta distribution
“1 i — k=1
— - k=2
o k=5
= T -— k=10
i @ — k=100
Yik|Ck ~ Bernoulli({x) 2| !
Ckla, 1 ~ Beta(a/k, 1) |‘&___
o N T e = e

SGriffiths and Ghahramani (2005) Technical report, Gatsby Computational

Neuroscience Unit
®Rotkovd, V., George, E. I., (2016, 2014) Journal of the American Statistical

Association



. . f“ Harvard-MIT Center
Hyper prior on the latent indicators & o Regulatory Science

Indian buffet process (IBP) prior °

M= {’ij}, k=1
Beta distribution
“1 i — k=1
— - k=2
o k=5
= T -— k=10
i @ — k=100
Yik|Ck ~ Bernoulli({x) 2| !
Ckla, 1 ~ Beta(a/k, 1) |‘&___
o N T e = e

Sk

Inference is done via EM algorithm®, providing closed-form expressions.

SGriffiths and Ghahramani (2005) Technical report, Gatsby Computational

Neuroscience Unit
®Rotkovd, V., George, E. I., (2016, 2014) Journal of the American Statistical

Association
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initialise ¢ = ¢(©, 0 = 00, 3 = g, 7, = 70 (= O
while € > €*, ¢y > €5 and t < T
E-step:
Latent factors: E[f;|A, X] = (lg+ ¢ T5,8) 1" To, (i — bv; — B;)
Latent indicatorst:  E[yx | A] = pj
M-step:
Loadings*: gli\)jk =arg maxgp, Ql(A)
Variances: 7,7 = sk disg {00, 4,0 (8] — 288l | 1767 + LA 1167 ) + ey}
Coefficients: (9], ﬁT) Z, {7‘ b (x,J 43T1]<:[f, | 1)(vis b;)T] [Z,. [%17 bi(v;, b7)(vi, b,»)T] + %'Tl
J 1 ka+ k
C-i-/:’q-f-P 1
set AT = A and ¢(t+D) = §
compute ¢ = Q(AH) — Q(AY), ¢y = max|[¢y TV — ¢lf)|| and
=t+1

Weights: C k =

end
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v/ Enables a more complete understanding of multi-study data.
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v EM algorithm is able to effectively estimate and remove such biases.
v/ Dimension of the latent factors is learned
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Enables a more complete understanding of multi-study data.

Corrects mean and variance batch effects.

EM algorithm is able to effectively estimate and remove such biases.
Dimension of the latent factors is learned

Discriminates the important (slab), from the ignorable factors (spike).
Provides guidelines for the choice of Ay and X\

NLPs facilitate interpretation: well-separated hypotheses.

NLPs balance parsimony and sensitivity

Closed-form expressions of EM available (also approximations)

prior densities inclusion probabilities
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prior Normal—-spike prior Laplace—spike
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" Avalos-Pacheco A. , Rossell D. , Savage R. S. , (2020+) arXiv
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Synthetic data without batch effects for n = 100, g* = 10, p = 1,000 or
1,500 parameters, truly sparse loadings ¢*.
@

¢ + 71
= 1,000 5= 1,500
Model § [[#llo  1BIX] = BIXIlIF  licovisl - Sovtll § [[@llo  NEX] = EX]llF  l1covt] - Covill

qg=10

Flat 10.0 10000.0 73.5 125.3 10.0 10000.0 89.4 203.7

Normal-SS 10.0 1298.6 439 89.1 10.0 1931.4 54.2 180.7

MOM-SS 10.0 1296.6 435 80.7 10.0 1919.3 56.2 169.4

FastBFA 9.9 778.1 60.3 165.0 9.9 1157.8 72.8 247.7

LASSO-BIC 10.0 5288.7 54.9 270.2 10.0 8414.6 67.2 408.4
q = 100

Flat | 100.0 100000.0 209.5 185.7 100.0 100000.0 259.2 280.2

Normal-SS 31.0 1228.6 109.0 144.6 56.4 1568.2 181.3 231.9

MOM-SS 9.7 856.8 79.4 143.3 9.2 745.4 105.0 245.6

FastBFA 83.6 1389.9 198.1 141.9 87.2 1763.9 208.2 211.3

LASSO-BIC 10.0 4787.3 54.1 271.4 10.0 7976.6 66.1 409.3
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Synthetic data with batch effects for n = 200, ¢* = 10, p = 250 or 500
parameters, truly sparse loadings ¢*.
@

b + T}
p = 250 [ p =500
Model q [¢llo  IEX] - EXIle 1267 ~ iz 16711 q [l9llo NEX]-BIXIIlF 1126 -5z 196711
qg=10
Flat | 10.0  2500.0 42.7 52.0 10.0  2500.0 54.8 68.2
Normal-SS | 10.0 330.0 39.7 53.7 10.0 650.0 51.2 68.1
MOM-SS | 10.0 330.0 39.2 61.3 10.0 650.0 49.6 86.1
ComBat-MLE | 10.0  2500.0 127.2 143.3 10.0  2500.0 177.9 200.8
FastBFA | 10.0 173.1 53.7 166.8 10.0 376.0 713 235.4
LASSO-BIC | 10.0 14413 39.9 179.4 10.0 3159.1 50.0 254.2
q =100
Flat | 100.0 25000.0 96.8 100.6 100.0 25000.0 147.8 152.5
Normal-SS | 10.0 765.8 45.7 54.8 10.6  1146.3 60.0 72.6
MOM-SS | 10.0 740.4 63.8 72.4 10.0 1158.7 85.7 108.3
ComBat-MLE | 100.0 25000.0 169.0 182.9 100.0 25000.0 232.7 252.4
FastBFA | 10.0 337.0 51.9 168.3 11.3 681.8 75.8 247.9
LASSO-BIC | 10.3  1374.0 39.6 178.9 103 2613.9 49.8 252.1
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Gene expression
o It has been used as a drug discovery tool
o Key to understanding biological process such as cancer

o Useful for classifying cancer tumours into subtypes
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@ Ovarian cancer: curatedOvarianData 1.16.0, p = 1,007 genes
@ llumina Human microRNA array E.MTAB.386, n; = 129 patients.
@ GSE30161, n, = 58 patients.
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@ Ovarian cancer: curatedOvarianData 1.16.0, p = 1,007 genes
@ llumina Human microRNA array E.MTAB.386, n; = 129 patients.
@ GSE30161, n, = 58 patients.

@ Lung cancer: TCGA2STAT 1.2, p = 1,198 genes
@ Affymetrix Human Genome U133A 2.0 Array, n; = 133 patients.
@ Affymetrix Human Exon 1.0 ST Array, n, = 112 patients.

© Colon cancer: Gene Expression Omnibus, p = 172 genes in the

f-TBRS signature.

©® GSE17538, n; = 238 patients.
@ GSE14333, n, = 101 patients.



f‘. Harvard-MIT Center
Cancer datasets ’J for Regulatory Science
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@ llumina Human microRNA array E.MTAB.386, n; = 129 patients.
@ GSE30161, n, = 58 patients.

@ Lung cancer: TCGA2STAT 1.2, p = 1,198 genes
@ Affymetrix Human Genome U133A 2.0 Array, n; = 133 patients.
@ Affymetrix Human Exon 1.0 ST Array, n, = 112 patients.

© Colon cancer: Gene Expression Omnibus, p = 172 genes in the

f-TBRS signature.

©® GSE17538, n; = 238 patients.
@ GSE14333, n, = 101 patients.

@ Age at initial pathologic diagnosis has been used as covariate.
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Su perwsed ’J for Regulatory Science

Expression data of cancer datasets. Supervised analysis for ovarian
(p = 1,007 genes), lung (p = 1,198 genes) and colon (p = 172 genes)
data sets.

Ovarian Lung Colon

g Mo Concordance index § [M]o  Concordance index g |M|o  Concordance index
Batch 1-MLE 90% | 67.1  67569.7 0.618 521 624158 0.461 529  9081.6 0.736
Batch 1-MLE 70% | 27.0  27088.3 0.632 35.2  42169.6 0.471 17.0  2924.0 0.721
Batch 2-MLE 90% | 40.4  40481.4 0.522 36.6  43607.2 0.522 48.1  8256.0 0.479
Batch 2-MLE 70% | 23.4  23362.4 0.524 23.2  27913.4 0.419 233 4007.6 0.495
Flat | 100.0 100700.0 0.634 100.0 119800.0 0.669 100.0 17200.0 0.594
Normal-SS 7.8 7854.6 0.568 11.0  13178.0 0.489 7.0 1204.0 0.621
MOM-SS 4.0 4028.0 0.588 74.0  88652.0 0.665 53.4 01848 0.764
ComBat-MLE 90% | 101.0 101707.0 0.589 79.0  94642.0 0.688 67.0 11524.0 0.738
ComBat-MLE 70% | 41.0 41287.0 0.588 30.0 35940.0 0.568 240 41280 0.734
ComBat-FastBFA | 100.0 100700.0 0.527 100.0 119800.0 0.707 100.0 17200.0 0.582
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R Packages
© BMFR: https://github.com/AleAviP/BFR.BE
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