Factor regression for dimensionality reduction and data integration techniques with applications to cancer data

> Alejandra Avalos Pacheco ¥@AleAviP ✓avalos@hms.harvard.edu

Harvard-MIT Center for Regulatory Science Cancer Institute

< □ > < @ > < 注 > < 注 > ... 注

Junior Bayes Beyond Borders (JB^3)

July 9th, 2020

Dr. David Rossell UPF

Dr. Richard Savage Pinpoint

◆□▶ ◆□▶ ◆□▶ ◆□▶

▶ ◀ 볼 ▶ 볼 ∽ ९. July 9th, 2020 1/30

Harvard-MIT Center for Regulatory Science

• New technologies enable the gathering of large datasets.

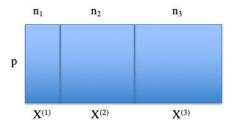
イロト イボト イヨト イヨト

- New technologies enable the gathering of large datasets.
- Two main statistical challenges:
 - ${\scriptstyle \bullet}\,$ Volume: High dim. data \implies models with more parameters.
 - Variety: Data are often not collected all at once but in batches/studies.

A = A = A

Harvard-MIT Center for Regulatory Science

- New technologies enable the gathering of large datasets.
- Two main statistical challenges:
 - ${\scriptstyle \bullet}\,$ Volume: High dim. data \implies models with more parameters.
 - Variety: Data are often not collected all at once but in batches/studies.
- GOAL: Combine multiple studies into a single analysis.



→ ∃ →

Harvard-MIT Center for Regulatory Science

Solution

A sparse latent factor regression model to integrate heterogeneous data

Harvard-MIT Center for Regulatory Science

Solution

A sparse latent factor regression model to integrate heterogeneous data Factor analysis + factor regression + sparsity + batch effect correction

Image: A Image: A

Harvard-MIT Center for Regulatory Science

Solution

A sparse latent factor regression model to integrate heterogeneous data Factor analysis + factor regression + sparsity + batch effect correction

Contributions:

() Showing that these issues are practically-relevant in cancer genomics.

Harvard-MIT Center for Regulatory Science

Solution

A sparse latent factor regression model to integrate heterogeneous data Factor analysis + factor regression + sparsity + batch effect correction

Contributions:

- Showing that these issues are practically-relevant in cancer genomics.
- A flexible Bayesian factor regression model to integrate large datasets, jointly learning batch and covariate effects and sparse low-rank covariances.

• • = • • = •

Solution

A sparse latent factor regression model to integrate heterogeneous data Factor analysis + factor regression + sparsity + batch effect correction

Contributions:

- Showing that these issues are practically-relevant in cancer genomics.
- A flexible Bayesian factor regression model to integrate large datasets, jointly learning batch and covariate effects and sparse low-rank covariances.
- A novel and scalable non-local prior based formulation to induce sparsity and learn the number of factors. The first adaptation of non-local priors to factor models.

・ 何 ト ・ ヨ ト ・ ヨ ト

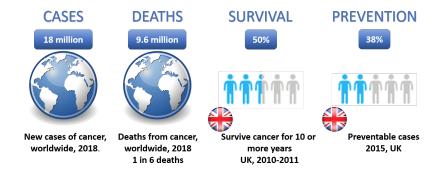
Solution

A sparse latent factor regression model to integrate heterogeneous data Factor analysis + factor regression + sparsity + batch effect correction

Contributions:

- Showing that these issues are practically-relevant in cancer genomics.
- A flexible Bayesian factor regression model to integrate large datasets, jointly learning batch and covariate effects and sparse low-rank covariances.
- A novel and scalable non-local prior based formulation to induce sparsity and learn the number of factors. The first adaptation of non-local priors to factor models.
- A scalable EM algorithm with closed-form updates to obtain Mode a Posteriori (MAP) estimates and an R implementation publicly available https://github.com/AleAviP/BFR.BE.

Cancer statistics ¹



¹ https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-typ https://www.who.int/news-room/fact-sheets/detail/cancer

Cancer statistics ¹

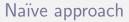
Harvard-MIT Center for Regulatory Science



Large scale projects:

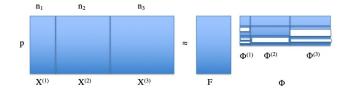
- The Cancer Genome Atlas (TCGA),
- Cancer Genome Project (CGP)
- International Cancer Genome Consortium (ICGC)

¹ https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-typ https://www.who.int/news-room/fact-sheets/detail/cancer



Harvard-MIT Center for Regulatory Science

- Edefonti et al (2012) stack all the studies in **one** data-set: $\mathbf{x}_{i}^{\top} = \left((\mathbf{x}_{i}^{(1)})^{\top}, (\mathbf{x}_{i}^{(2)})^{\top}, \dots, (\mathbf{x}_{i}^{(S)})^{\top} \right)$
- Perform factor analysis



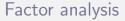
・ 同 ト ・ ヨ ト ・ ヨ ト

Factor analysis

Harvard-MIT Center for Regulatory Science

• Goal: Given $X \in \mathbb{R}^{n imes p}$ obtain $F \in \mathbb{R}^{n imes q}$, q << p

イロト イポト イヨト イヨト

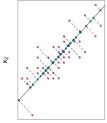


<< p

Harvard-MIT Center for Regulatory Science

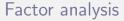
• Goal: Given
$$X \in \mathbb{R}^{n \times p}$$
 obtain $F \in \mathbb{R}^{n \times q}$, q
• Model: $\mathbf{x}_i = \phi \mathbf{f}_i + \mathbf{e}_i$
 $f_i \sim N(0, \mathbf{I})$
 $\mathbf{e}_i \mid \mathcal{T} \sim N(0, \mathcal{T}^{-1})$
 $\mathbf{x}_i \mid \mathbf{f}_i, \phi, \mathcal{T} \sim N(\phi f_i, \mathcal{T}^{-1})$
 $\mathbf{x}_i \mid \phi, \mathcal{T} \sim N(0, \phi \phi^\top + \mathcal{T}^{-1})$

• MLE, optimise: $\log p(X|\phi, T) \phi$ and T do not have a closed-form.



 \mathbf{x}_1

イロト イボト イヨト イヨト



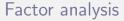
Harvard-MIT Center for Regulatory Science

• Goal: Given
$$X \in \mathbb{R}^{n \times p}$$
 obtain $F \in \mathbb{R}^{n \times q}$, $q << p$
• Model: $x_i = \phi f_i + e_i$
 $f_i \sim N(0, \mathbf{I})$
 $e_i \mid \mathcal{T} \sim N(0, \mathcal{T}^{-1})$
 $x_i \mid f_i, \phi, \mathcal{T} \sim N(\phi f_i, \mathcal{T}^{-1})$
 $x_i \mid \phi, \mathcal{T} \sim N(0, \phi \phi^\top + \mathcal{T}^{-1})$
• MLE, optimise: $\log p(X \mid \phi, \mathcal{T})$

 ϕ and $\mathcal T$ do not have a state of the set of the se

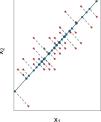
• When $\mathcal{T}^{-1} = \sigma_{\epsilon}^2 I$, we recover PPCA and PCA when $\mathcal{T}^{-1} = 0$.

• • = • • = •



Harvard-MIT Center for Regulatory Science

- Goal: Given $X \in \mathbb{R}^{n \times p}$ obtain $F \in \mathbb{R}^{n \times q}$, q << p• Model: $\mathbf{x}_i = \phi \mathbf{f}_i + \mathbf{e}_i$ $f_i \sim N(0, \mathbf{I})$ $\mathbf{e}_i \mid \mathcal{T} \sim N(0, \mathcal{T}^{-1})$ $\mathbf{x}_i \mid \mathbf{f}_i, \phi, \mathcal{T} \sim N(\phi f_i, \mathcal{T}^{-1})$ $\mathbf{x}_i \mid \phi, \mathcal{T} \sim N(0, \phi \phi^\top + \mathcal{T}^{-1})$
- MLE, optimise: log p(X|φ, T)
 φ and T do not have a closed-form.



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• When $\mathcal{T}^{-1} = \sigma_{\epsilon}^2 I$, we recover PPCA and PCA when $\mathcal{T}^{-1} = 0$.

• **Problem:** Provides limited flexibility to account for systematic biases or sources of variation that are not of interest

Harvard-MIT Center for Regulatory Science

Batch effects are non-biological experimental variation

イロト イボト イヨト イヨト

Harvard-MIT Center for Regulatory Science

Batch effects are non-biological experimental variation

• Arise when data are generated under different experimental conditions.

Harvard-MIT Center for Regulatory Science

Batch effects are non-biological experimental variation

- Arise when data are generated under different experimental conditions.
- Are inevitable and can lead to incorrect conclusions when combining data without adjusting for it.

Harvard-MIT Center for Regulatory Science

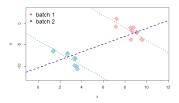
Batch effects are non-biological experimental variation

- Arise when data are generated under different experimental conditions.
- Are inevitable and can lead to incorrect conclusions when combining data without adjusting for it.
- Account for a large part of the covariance and thus have a strong effect on the solution, limiting our ability to see biological patterns of interest.

Harvard-MIT Center for Regulatory Science

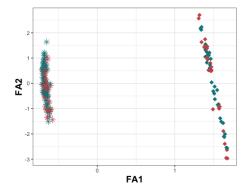
Batch effects are non-biological experimental variation

- Arise when data are generated under different experimental conditions.
- Are inevitable and can lead to incorrect conclusions when combining data without adjusting for it.
- Account for a large part of the covariance and thus have a strong effect on the solution, limiting our ability to see biological patterns of interest.



Ovarian cancer dataset

Harvard-MIT Center for Regulatory Science



イロト イボト イヨト イヨト

BFR with batch effect correction ²

Harvard-MIT Center for Regulatory Science

Bayesian factor regression with batch effect correction:

- Model: $\mathbf{x}_i = \phi \mathbf{f}_i + \theta \mathbf{v}_i + \beta \mathbf{b}_i + \mathbf{e}_i$
 - $\theta \in \mathbb{R}^{p \times p_v}$: regression coefficients
 - $\beta \in \mathbb{R}^{p \times p_b}$: additive batch effects
 - $v_i \in \mathbb{R}^{p_v}$: observed covariates
 - $b_i \in \{0,1\}^{p_b}$: batch indicators
 - $e_{ij} \sim N(0, \tau_{js}^{-1})$, τ_{js} : the j^{th} idiosyncratic precision element in batch s.

 2 Avalos-Pacheco A. , Rossell D. , Savage R. S. , (2020+) arXiv \sim

BFR with batch effect correction ²

Harvard-MIT Center for Regulatory Science

Bayesian factor regression with batch effect correction:

- Model: $\mathbf{x}_i = \phi \mathbf{f}_i + \theta \mathbf{v}_i + \beta \mathbf{b}_i + \mathbf{e}_i$
 - $\theta \in \mathbb{R}^{p \times p_v}$: regression coefficients
 - $\beta \in \mathbb{R}^{p \times p_b}$: additive batch effects
 - $v_i \in \mathbb{R}^{p_v}$: observed covariates
 - $b_i \in \{0,1\}^{p_b}$: batch indicators
 - $e_{ij} \sim N(0, \tau_{js}^{-1})$, τ_{js} : the j^{th} idiosyncratic precision element in batch s.

Priors

- Idiosyncratic precisions: $au_{jl} \mid \eta, \xi \sim \mbox{ Gamma}(\eta/2, \eta\xi/2)$
- Regression parameters: $(\hat{\theta}_j, \beta_j) \sim N(0, \psi \mathbf{I})$

²Avalos-Pacheco A. , Rossell D. , Savage R. S. , (2020+) arXiv A = A A A

Bayesian factor regression with batch effect correction

Flat prior on the loadings

Harvard-MIT Center for Regulatory Science

Bayesian factor regression with batch effect correction model

 $\mathbf{x}_i = \phi \mathbf{f}_i + \theta \mathbf{v}_i + \beta \mathbf{b}_i + \mathbf{e}_i$

Harvard-MIT Center for Regulatory Science

Bayesian factor regression with batch effect correction model

$$\mathbf{x}_i = \phi \mathbf{f}_i + \theta \mathbf{v}_i + \beta \mathbf{b}_i + \mathbf{e}_i$$

Enables a more complete understanding of multi-study data.

Harvard-MIT Center for Regulatory Science

Bayesian factor regression with batch effect correction model

 $\mathbf{x}_i = \phi \mathbf{f}_i + \theta \mathbf{v}_i + \beta \mathbf{b}_i + \mathbf{e}_i$

Enables a more complete understanding of multi-study data.
 Corrects mean and variance batch effects.

A = A = A

Harvard-MIT Center for Regulatory Science

Bayesian factor regression with batch effect correction model

 $\mathbf{x}_i = \phi \mathbf{f}_i + \theta \mathbf{v}_i + \beta \mathbf{b}_i + \mathbf{e}_i$

Enables a more complete understanding of multi-study data.

- Corrects mean and variance batch effects.
- \checkmark EM algorithm is able to effectively estimate and remove such biases.

Harvard-MIT Center for Regulatory Science

Bayesian factor regression with batch effect correction model

 $\mathbf{x}_i = \phi \mathbf{f}_i + \theta \mathbf{v}_i + \beta \mathbf{b}_i + \mathbf{e}_i$

Enables a more complete understanding of multi-study data.

- ✓ Corrects mean and variance batch effects.
- EM algorithm is able to effectively estimate and remove such biases.
- X Dimension of latent factors needs to be specified.

Spike-and-slab prior on the loadings

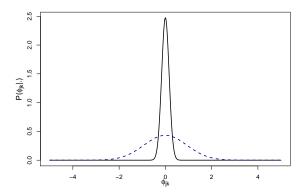
Harvard-MIT Center for Regulatory Science

 $\mathsf{p}(\phi_{jk} \mid \gamma, \lambda_0, \lambda_1) = (1 - \gamma_{jk})\mathsf{p}(\phi_{jk} \mid \lambda_0, \gamma_{jk} = 0) + \gamma_{jk}\mathsf{p}(\phi_{jk} \mid \lambda_1, \gamma_{jk} = 1)$

³George and McCulloch (1993) Journal of the American Statistical Association 🔊 🗠

Spike-and-slab prior on the loadings

$$\begin{split} \mathsf{p}(\phi_{jk} \mid \gamma, \lambda_0, \lambda_1) &= (1 - \gamma_{jk}) \mathsf{p}(\phi_{jk} \mid \lambda_0, \gamma_{jk} = 0) + \gamma_{jk} \mathsf{p}(\phi_{jk} \mid \lambda_1, \gamma_{jk} = 1) \\ & \times \text{ Normal-spike-and-slab }^3 \end{split}$$



³George and McCulloch (1993) Journal of the American Statistical Association

Avalos-Pacheco

Cross-study Bayesian factor regression

July 9th, 2020 11 / 30

Normal-spike-and-slab prior model

- Enables a more complete understanding of multi-study data.
- ✓ Corrects mean and variance batch effects.
- \checkmark EM algorithm is able to effectively estimate and remove such biases.

Normal-spike-and-slab prior model

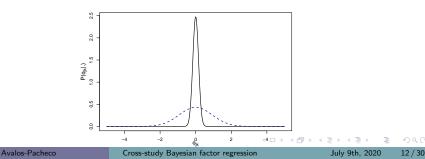
- Enables a more complete understanding of multi-study data.
- ✓ Corrects mean and variance batch effects.
- EM algorithm is able to effectively estimate and remove such biases.
- Dimension of the latent factors is learned

Normal-spike-and-slab prior model

- Enables a more complete understanding of multi-study data.
 - Corrects mean and variance batch effects.
 - EM algorithm is able to effectively estimate and remove such biases.
- Dimension of the latent factors is learned
- Discriminates the important (slab), from the ignorable factors (spike).

Normal-spike-and-slab prior model

- Enables a more complete understanding of multi-study data.
 - Corrects mean and variance batch effects.
 - EM algorithm is able to effectively estimate and remove such biases.
- Dimension of the latent factors is learned
- Discriminates the important (slab), from the ignorable factors (spike).
- Slab prior assigns non-negligible positive probability to regions consistent with null hypotheses.



Spike-and-slab prior on the loadings

Harvard-MIT Center for Regulatory Science

$$\begin{split} \mathsf{p}(\phi_{jk} \mid \gamma, \lambda_0, \lambda_1) &= (1 - \gamma_{jk}) \mathsf{p}(\phi_{jk} \mid \lambda_0, \gamma_{jk} = 0) + \gamma_{jk} \mathsf{p}(\phi_{jk} \mid \lambda_1, \gamma_{jk} = 1) \\ & \times \text{ Normal-spike-and-slab} \end{split}$$

⁴ Johnson V. E., Rossell, D., (2010) Journal of the Royal Statistical Society Series Bace

Spike-and-slab prior on the loadings

Harvard-MIT Center for Regulatory Science

 $\mathsf{p}(\phi_{jk} \mid \gamma, \lambda_0, \lambda_1) = (1 - \gamma_{jk})\mathsf{p}(\phi_{jk} \mid \lambda_0, \gamma_{jk} = 0) + \gamma_{jk}\mathsf{p}(\phi_{jk} \mid \lambda_1, \gamma_{jk} = 1)$

- * Normal-spike-and-slab
- ★ Normal-spike-and-MOM-slab ⁴

⁴ Johnson V. E., Rossell, D., (2010) Journal of the Royal Statistical Society Series Bace

Spike-and-slab prior on the loadings

Harvard-MIT Center for Regulatory Science

 $\mathsf{p}(\phi_{jk} \mid \gamma, \lambda_0, \lambda_1) = (1 - \gamma_{jk})\mathsf{p}(\phi_{jk} \mid \lambda_0, \gamma_{jk} = 0) + \gamma_{jk}\mathsf{p}(\phi_{jk} \mid \lambda_1, \gamma_{jk} = 1)$

- * Normal-spike-and-slab
- ★ Normal-spike-and-MOM-slab ⁴

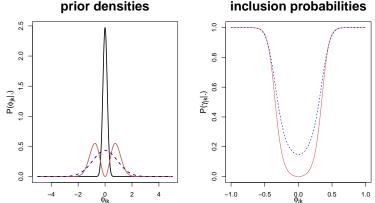
Non-local priors

An absolutely continuous measure with density $p(\phi_{jk} \mid \gamma_{jk} = 1)$ is a non-local prior if $\lim_{\phi_{jk}\to 0} p(\phi_{jk} \mid \gamma_{jk} = 1) = 0$.

⁴ Johnson V. E., Rossell, D., (2010) Journal of the Royal Statistical Society Series Bace

Bayesian factor regression with batch effect correction

Novel non-local spike-and-slab priors State Harvard-MIT Center for Regulatory Science



inclusion probabilities

Avalos-Pacheco

July 9th, 2020 14 / 30 Hyper prior on the latent indicators

Harvard-MIT Center for Regulatory Science

Indian buffet process (IBP) prior ⁵

$$\mathsf{\Gamma} = \{\gamma_{jk}\}_{j,k=1}^{P,\infty}$$

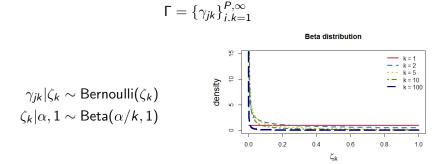
Avalos-Pacheco

⁵Griffiths and Ghahramani (2005) Technical report, Gatsby Computational Neuroscience Unit

⁶Ročková, V., George, E. I., (2016, 2014) Journal of the American Statistical Association

Hyper prior on the latent indicators

Indian buffet process (IBP) prior ⁵



⁵Griffiths and Ghahramani (2005) Technical report, Gatsby Computational Neuroscience Unit

 6 Ročková, V., George, E. I., (2016, 2014) Journal of the American Statistical Association \bigcirc

Avalos-Pacheco

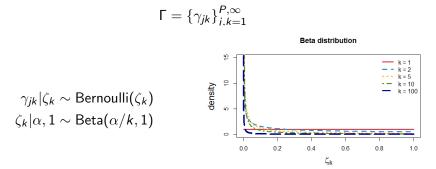
July 9th, 2020 15 / 30

Hyper prior on the latent indicators

ators 🤡

Harvard-MIT Center for Regulatory Science

Indian buffet process (IBP) prior ⁵



Inference is done via EM algorithm⁶, providing closed-form expressions.

⁵Griffiths and Ghahramani (2005) Technical report, Gatsby Computational Neuroscience Unit

⁶Ročková, V., George, E. I., (2016, 2014) Journal of the American Statistical Association

Avalos-Pacheco

July 9th, 2020 15 / 30

Algorithm

Harvard-MIT Center for Regulatory Science

initialise
$$\hat{\phi} = \phi^{(0)}$$
, $\hat{\theta} = \theta^{(0)}$, $\hat{\beta} = \beta^{(0)}$, $\widehat{\mathcal{T}_{b_i}} = \mathcal{T}_{b_i}^{(0)}$, $\hat{\zeta} = \zeta^{(0)}$
while $\epsilon > \epsilon^*$, $\epsilon_{\phi} > \epsilon_{\phi}^*$ and $t < T$

E-step:

Latent factors: $\mathbb{E}[f_i|\hat{\Delta}, X] = (\mathbf{I}_q + \hat{\phi}^\top \widehat{\mathcal{T}_{b_i}} \hat{\phi})^{-1} \hat{\phi}^\top \widehat{\mathcal{T}_{b_i}} (x_i - \hat{\theta}v_i - \hat{\beta}v_i)$ Latent indicators⁺: $\mathbb{E}[\gamma_{jk} \mid \hat{\Delta}] = \hat{p}_{jk}$ **M-step**:

 $\begin{array}{ll} \text{Loadings}^{+} : & \hat{\phi}_{jk} = \arg\max_{\phi_{jk}} Q_{1}(\hat{\Delta}) \\ \text{Variances:} & \hat{\tau}_{i}^{-1} = \frac{1}{n_{i}+n-2} \text{diag} \left\{ \sum_{i: \ b_{ij}=1} \left(\tilde{z}_{i} \tilde{z}_{i}^{\top} - 2 \tilde{z}_{i} \mathbb{E}[f_{i} \mid \cdot]^{\top} \hat{\phi}^{\top} + \hat{\phi} \mathbb{E}[f_{i} f_{i}^{\top} \mid \cdot] \hat{\phi}^{\top} \right) + \eta \xi \mathbf{I}_{\rho} \right\} \\ \text{Coefficients:} & (\hat{\theta}_{j}^{\top}, \hat{\beta}_{j}^{\top}) = \sum_{i} \left[\hat{\tau}_{j}^{\top} b_{i}(x_{ij} - \hat{\phi}_{j}^{\top} \mathbb{E}[f_{i} \mid \cdot])(v_{i}, b_{i})^{\top} \right] \left[\sum_{i} \left[\hat{\tau}_{j}^{\top} b_{i}(v_{i}, b_{i})(v_{i}, b_{i})^{\top} \right] + \frac{1}{\psi} \mathbf{I} \right]^{-1} \\ \text{Weights:} & \hat{\zeta}_{k} = \frac{\sum_{j=1}^{\rho} \hat{p}_{jk} + \frac{a_{\zeta}}{k} - 1}{\frac{a_{\zeta}}{k} + b_{\zeta} + \rho - 1} \\ \text{set } \Delta^{(t+1)} = \hat{\Delta} \text{ and } \phi^{(t+1)} = \hat{\phi} \\ \text{compute } \epsilon = Q(\Delta^{t+1}) - Q(\Delta^{t}), \ \epsilon_{\phi} = \max ||\phi_{jk}^{(t+1)} - \phi_{jk}^{(t)}|| \text{ and} \\ t = t + 1 \end{array}$

end

3

・ 同 ト ・ ヨ ト ・ ヨ ト …

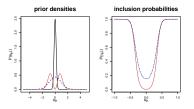
- Enables a more complete understanding of multi-study data.
- ✓ Corrects mean and variance batch effects.
- EM algorithm is able to effectively estimate and remove such biases.
- Dimension of the latent factors is learned
- Discriminates the important (slab), from the ignorable factors (spike).

- Enables a more complete understanding of multi-study data.
- ✓ Corrects mean and variance batch effects.
- EM algorithm is able to effectively estimate and remove such biases.
- Dimension of the latent factors is learned
- Discriminates the important (slab), from the ignorable factors (spike).
- Provides guidelines for the choice of λ_0 and λ_1

- Enables a more complete understanding of multi-study data.
- ✓ Corrects mean and variance batch effects.
- EM algorithm is able to effectively estimate and remove such biases.
- Dimension of the latent factors is learned
- Discriminates the important (slab), from the ignorable factors (spike).
- Provides guidelines for the choice of λ_0 and λ_1
- NLPs facilitate interpretation: well-separated hypotheses.

- Enables a more complete understanding of multi-study data.
- ✓ Corrects mean and variance batch effects.
- EM algorithm is able to effectively estimate and remove such biases.
- Dimension of the latent factors is learned
- Discriminates the important (slab), from the ignorable factors (spike).
- Provides guidelines for the choice of λ_0 and λ_1
- NLPs facilitate interpretation: well-separated hypotheses.
- NLPs balance parsimony and sensitivity

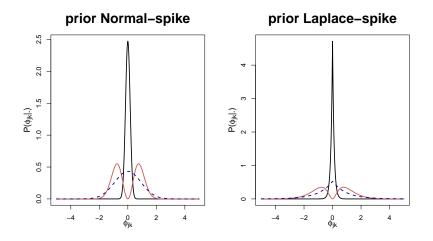
- Enables a more complete understanding of multi-study data.
 - Corrects mean and variance batch effects.
 - EM algorithm is able to effectively estimate and remove such biases.
- Dimension of the latent factors is learned
- Discriminates the important (slab), from the ignorable factors (spike).
- Provides guidelines for the choice of λ_0 and λ_1
- NLPs facilitate interpretation: well-separated hypotheses.
- NLPs balance parsimony and sensitivity
- Closed-form expressions of EM available (also approximations)



Bayesian factor regression with batch effect correction

Laplace-spike-and-MoM-slab prior ⁷

Harvard-MIT Center for Regulatory Science



⁷Avalos-Pacheco A. , Rossell D. , Savage R. S. , (2020+) arXiv $\scriptstyle{\scriptstyle A}$

Avalos-Pacheco

Cross-study Bayesian factor regression

July 9th, 2020 18 / 30

Simulation studies

Harvard-MIT Center for Regulatory Science

Synthetic data without batch effects for n = 100, $q^* = 10$, p = 1,000 or 1,500 parameters, truly sparse loadings ϕ^* .

	p = 1,000					p = 1,500				
Model	\hat{q} $ \hat{\phi} $		$ \mathbb{E}[X] - \hat{\mathbb{E}}[X] _F$	$ Cov[x_i] - \widehat{Cov}[x_i] $	ĝ	$ \hat{\phi} _{0}$	$ \mathbb{E}[X] - \hat{\mathbb{E}}[X] _F$	$ Cov[x_i] - \widehat{Cov}[x_i] $		
	q = 10									
Flat	10.0	10000.0	73.5	125.3	10.0	10000.0	89.4	203.7		
Normal-SS	10.0	1298.6	43.9	89.1	10.0	1931.4	54.2	180.7		
MOM-SS	10.0	1296.6	43.5	80.7	10.0	1919.3	56.2	169.4		
FastBFA	9.9	778.1	60.3	165.0	9.9	1157.8	72.8	247.7		
LASSO-BIC	10.0	5288.7	54.9	270.2	10.0	8414.6	67.2	408.4		
	q = 100									
Flat	100.0	100000.0	209.5	185.7	100.0	100000.0	259.2	280.2		
Normal-SS	31.0	1228.6	109.0	144.6	56.4	1568.2	181.3	231.9		
MOM-SS	9.7	856.8	79.4	143.3	9.2	745.4	105.0	245.6		
FastBFA	83.6	1389.9	198.1	141.9	87.2	1763.9	208.2	211.3		
LASSO-BIC	10.0	4787.3	54.1	271.4	10.0	7976.6	66.1	409.3		
							▶ < E > < E	▶ 目 ∽		

Avalos-Pacheco

July 9th, 2020 19 / 30

Simulation studies

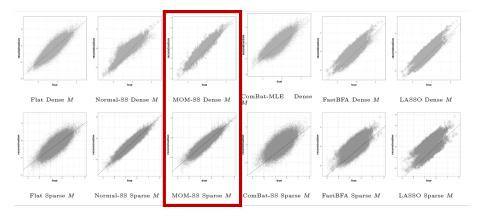
Synthetic data with batch effects for n = 200, $q^* = 10$, p = 250 or 500 parameters, truly sparse loadings ϕ^* .

	p = 250				<i>p</i> = 500				
Model	ĝ	$ \hat{\phi} _0$	$ \mathbb{E}[X] - \hat{\mathbb{E}}[X] _F$	$ Z\phi^{\top} - \mathbb{E}[Z \cdot]\hat{\phi}^{\top} _{F}$	ĝ	$ \hat{\phi} _0$	$ \mathbb{E}[X] - \hat{\mathbb{E}}[X] _F$	$ Z\phi^{\top} - \mathbb{E}[Z \cdot]\hat{\phi}^{\top} _{F}$	
	q = 10								
Flat	10.0	2500.0	42.7	52.0	10.0	2500.0	54.8	68.2	
Normal-SS	10.0	330.0	39.7	53.7	10.0	650.0	51.2	68.1	
MOM-SS	10.0	330.0	39.2	61.3	10.0	650.0	49.6	86.1	
ComBat-MLE	10.0	2500.0	127.2	143.3	10.0	2500.0	177.9	200.8	
FastBFA	10.0	173.1	53.7	166.8	10.0	376.0	71.3	235.4	
LASSO-BIC	10.0	1441.3	39.9	179.4	10.0	3159.1	50.0	254.2	
	q = 100								
Flat	100.0	25000.0	96.8	100.6	100.0	25000.0	147.8	152.5	
Normal-SS	10.0	765.8	45.7	54.8	10.6	1146.3	60.0	72.6	
MOM-SS	10.0	740.4	63.8	72.4	10.0	1158.7	85.7	108.3	
ComBat-MLE	100.0	25000.0	169.0	182.9	100.0	25000.0	232.7	252.4	
FastBFA	10.0	337.0	51.9	168.3	11.3	681.8	75.8	247.9	
LASSO-BIC	10.3	1374.0	39.6	178.9	10.3	2613.9	49.8	252.1	

Avalos-Pacheco

Cross-study Bayesian factor regression

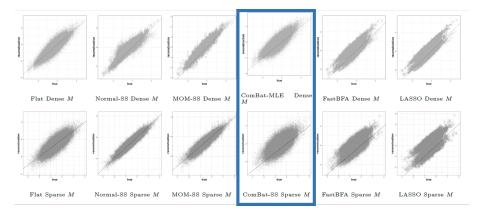
Simulation studies



July 9th, 2020 21 / 30

イロト イボト イヨト イヨト

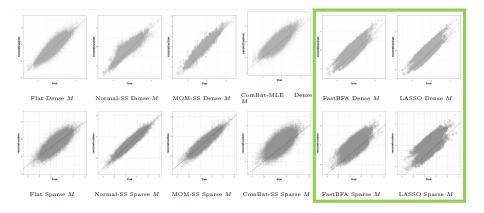
Simulation studies



July 9th, 2020 22 / 30

イロト イボト イヨト イヨト

Simulation studies



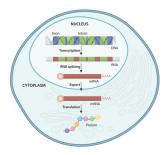
July 9th, 2020 23 / 30

◆□▶ ◆□▶ ◆□▶ ◆□▶

Gene expression

Gene expression

- It has been used as a drug discovery tool
- Key to understanding biological process such as cancer
- Useful for classifying cancer tumours into subtypes



() Ovarian cancer: curatedOvarianData 1.16.0, p = 1,007 genes

- **1** Ilumina Human microRNA array E.MTAB.386, $n_1 = 129$ patients.
- **Q** GSE30161, $n_2 = 58$ patients.

Cancer datasets

• • = • • = •

() Ovarian cancer: curatedOvarianData 1.16.0, p = 1,007 genes

- **1** Ilumina Human microRNA array E.MTAB.386, $n_1 = 129$ patients.
- **Q** GSE30161, $n_2 = 58$ patients.
- ② Lung cancer: TCGA2STAT 1.2, p = 1,198 genes
 - **0** Affymetrix Human Genome U133A 2.0 Array, $n_1 = 133$ patients.
 - **2** Affymetrix Human Exon 1.0 ST Array, $n_2 = 112$ patients.

Cancer datasets

・ 同 ト ・ ヨ ト ・ ヨ ト

() Ovarian cancer: curatedOvarianData 1.16.0, p = 1,007 genes

- **1** Ilumina Human microRNA array E.MTAB.386, $n_1 = 129$ patients.
- **Q** GSE30161, $n_2 = 58$ patients.
- ② Lung cancer: TCGA2STAT 1.2, p = 1,198 genes
 - Affymetrix Human Genome U133A 2.0 Array, $n_1 = 133$ patients.
 - **2** Affymetrix Human Exon 1.0 ST Array, $n_2 = 112$ patients.
- Colon cancer: Gene Expression Omnibus, p = 172 genes in the f-TBRS signature.
 - **O** GSE17538, $n_1 = 238$ patients.
 - **Q** GSE14333, $n_2 = 101$ patients.

Cancer datasets

イロト イポト イヨト イヨト

() Ovarian cancer: curatedOvarianData 1.16.0, p = 1,007 genes

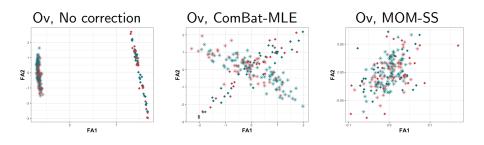
- **1** Ilumina Human microRNA array E.MTAB.386, $n_1 = 129$ patients.
- **Q** GSE30161, $n_2 = 58$ patients.
- ② Lung cancer: TCGA2STAT 1.2, p = 1,198 genes
 - Affymetrix Human Genome U133A 2.0 Array, $n_1 = 133$ patients.
 - **2** Affymetrix Human Exon 1.0 ST Array, $n_2 = 112$ patients.
- Colon cancer: Gene Expression Omnibus, p = 172 genes in the f-TBRS signature.
 - **(**) GSE17538, $n_1 = 238$ patients.
 - **Q** GSE14333, $n_2 = 101$ patients.

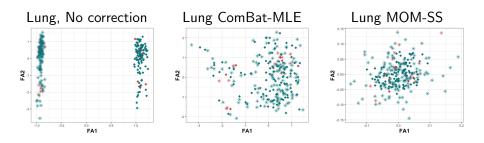
• Age at initial pathologic diagnosis has been used as covariate.

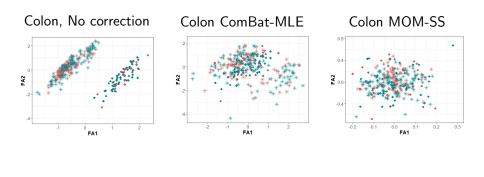
Cancer datasets

イロト 不得下 イヨト イヨト 二日

Ovarian Unsupervised







Colon Unsupervised

July 9th, 2020 28 / 30

Expression data of cancer datasets. Supervised analysis for ovarian (p = 1,007 genes), lung (p = 1,198 genes) and colon (p = 172 genes) data sets.

	Ovarian			Lung			Colon		
	ĝ	$ \hat{M} _0$	Concordance index	ĝ	$ \hat{M} _0$	Concordance index	ĝ	$ \hat{M} _0$	Concordance index
Batch 1-MLE 90%	67.1	67569.7	0.618	52.1	62415.8	0.461	52.9	9081.6	0.736
Batch 1-MLE 70%	27.0	27088.3	0.632	35.2	42169.6	0.471	17.0	2924.0	0.721
Batch 2-MLE 90%	40.4	40481.4	0.522	36.6	43607.2	0.522	48.1	8256.0	0.479
Batch 2-MLE 70%	23.4	23362.4	0.524	23.2	27913.4	0.419	23.3	4007.6	0.495
Flat	100.0	100700.0	0.634	100.0	119800.0	0.669	100.0	17200.0	0.594
Normal-SS	7.8	7854.6	0.568	11.0	13178.0	0.489	7.0	1204.0	0.621
MOM-SS	4.0	4028.0	0.588	74.0	88652.0	0.665	53.4	9184.8	0.764
ComBat-MLE 90%	101.0	101707.0	0.589	79.0	94642.0	0.688	67.0	11524.0	0.738
ComBat-MLE 70%	41.0	41287.0	0.588	30.0	35940.0	0.568	24.0	4128.0	0.734
ComBat-FastBFA	100.0	100700.0	0.527	100.0	119800.0	0.707	100.0	17200.0	0.582

Supervised

(4 何) トイヨト イヨト

Harvard-MIT Center for Regulatory Science

✓ Joint data adjustment and dimensionality reduction.

Harvard-MIT Center for Regulatory Science

✓ Joint data adjustment and dimensionality reduction.

✓ First time NLPs are implemented in the factor analysis.

- ✓ Joint data adjustment and dimensionality reduction.
- First time NLPs are implemented in the factor analysis.
- Sparse models increases the quality of our estimations (with and without batches).

- ✓ Joint data adjustment and dimensionality reduction.
- First time NLPs are implemented in the factor analysis.
- Sparse models increases the quality of our estimations (with and without batches).
- ✓ Advantages of MOM-SS:

- ✓ Joint data adjustment and dimensionality reduction.
- First time NLPs are implemented in the factor analysis.
- Sparse models increases the quality of our estimations (with and without batches).
- ✓ Advantages of MOM-SS:
 - improves the estimation of factor cardinality

- ✓ Joint data adjustment and dimensionality reduction.
- First time NLPs are implemented in the factor analysis.
- Sparse models increases the quality of our estimations (with and without batches).
- ✓ Advantages of MOM-SS:
 - improves the estimation of factor cardinality
 - encourages parsimony and selective shrinkage.

- ✓ Joint data adjustment and dimensionality reduction.
- First time NLPs are implemented in the factor analysis.
- Sparse models increases the quality of our estimations (with and without batches).
- ✓ Advantages of MOM-SS:
 - improves the estimation of factor cardinality
 - encourages parsimony and selective shrinkage.
 - removes distinct covariances patterns.

- ✓ Joint data adjustment and dimensionality reduction.
- First time NLPs are implemented in the factor analysis.
- Sparse models increases the quality of our estimations (with and without batches).
- ✓ Advantages of MOM-SS:
 - improves the estimation of factor cardinality
 - encourages parsimony and selective shrinkage.
 - removes distinct covariances patterns.
- Suitable in unsupervised and supervised frameworks.

- ✓ Joint data adjustment and dimensionality reduction.
- First time NLPs are implemented in the factor analysis.
- Sparse models increases the quality of our estimations (with and without batches).
- ✓ Advantages of MOM-SS:
 - improves the estimation of factor cardinality
 - encourages parsimony and selective shrinkage.
 - removes distinct covariances patterns.
- ✓ Suitable in unsupervised and supervised frameworks.
- Useful for downstream analyses: competitive concordance indexes, in some cases with substantially less factors.

- ✓ Joint data adjustment and dimensionality reduction.
- First time NLPs are implemented in the factor analysis.
- Sparse models increases the quality of our estimations (with and without batches).
- ✓ Advantages of MOM-SS:
 - improves the estimation of factor cardinality
 - encourages parsimony and selective shrinkage.
 - removes distinct covariances patterns.
 - Suitable in unsupervised and supervised frameworks.
- Useful for downstream analyses: competitive concordance indexes, in some cases with substantially less factors.

Avalos-Pacheco A., Rossell D., Savage R. S., 2020+ *Heterogeneous large datasets integration using Bayesian factor regression*. arXiv 1810.09894 (invited revision).

Johnson V. E., Rossell, D., 2010. *On the use of non-local prior densities in Bayesian hypothesis tests.* Journal of the Royal Statistical Society Series B 72(2),143-170.

Ganzfried, B. F., et. al., 2013. Curatedovariandata: clinically annotated data for the ovarian cancer transcriptome. Database 2013.

Wan, Y.-W., Allen, G. I., and Liu, Z., 2016. *TCGA2STAT: simple TCGA data access forintegrated statistical analysis in R.* Bioinformatics 32(6), 952-954.

Calon, A., et. al., 2012. Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell 22(5), 571-584..

R Packages

BMFR: https://github.com/AleAviP/BFR.BE

< ロ > < 同 > < 回 > < 回 >