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Introduction

For lack of time (and expertise), I will focus on control variates.

However, I will say a few words about the generality of Stein
method near the end.
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Control variates in a nutshell

To understand control variates, consider the following problem: we
have IID pairs (Xn,Yn), n = 1, . . . ,N, such that E(Xn) = 0. To
estimate α = E(Y ), we could use:

1 The empirical mean: Ȳ = N−1(Y1 + . . .+ YN).

2 The OLS estimate corresponding to the following linear
regression:

Yn = α + βXn + εn

where the εn are noise terms (zero mean).

By construction, estimate 2 always outperforms estimate 1. By how
much?

Look at the R2.
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Generalisations

replace the Xn by vectors of dimension p: multivariate
regression. Note the O(p3) complexity.

Automatically choose certain components: Lasso.

Extension: non-parametric regression.
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Application to Monte Carlo

Suppose you have any algorithm that generate random variables
Θ1, . . . ,ΘN according to e.g. a posterior distribution π(dθ). Ignore
the fact they not be IID. Then:

1 Take Yn = ϕ(Θn) for any ϕ : Θ → R of interest;

2 Find “by-products” Xn of the Θn’s, which have expectation
zero.

3 Linear regression.
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Control variates: why nobody uses them?

For a long time, I thought CV were not popular mainly because it
was a method that depends on the test function ϕ.

However, this is a silly argument. The OLS estimate is:

βOLS = (XT X )−1XT Y

and the only ϕ-dependent part is Y : pre-compute (XT X )−1XT .

Remaining issues:

how to construct control variates?

complexity is O(p3) if you take p covariates.

Nicolas Chopin JB3 discussion



Control variates: why nobody uses them?

For a long time, I thought CV were not popular mainly because it
was a method that depends on the test function ϕ.

However, this is a silly argument. The OLS estimate is:

βOLS = (XT X )−1XT Y

and the only ϕ-dependent part is Y : pre-compute (XT X )−1XT .

Remaining issues:

how to construct control variates?

complexity is O(p3) if you take p covariates.

Nicolas Chopin JB3 discussion



Control variates: why nobody uses them?

For a long time, I thought CV were not popular mainly because it
was a method that depends on the test function ϕ.

However, this is a silly argument. The OLS estimate is:

βOLS = (XT X )−1XT Y

and the only ϕ-dependent part is Y : pre-compute (XT X )−1XT .

Remaining issues:

how to construct control variates?

complexity is O(p3) if you take p covariates.

Nicolas Chopin JB3 discussion



Control variates: why nobody uses them?

For a long time, I thought CV were not popular mainly because it
was a method that depends on the test function ϕ.

However, this is a silly argument. The OLS estimate is:

βOLS = (XT X )−1XT Y

and the only ϕ-dependent part is Y : pre-compute (XT X )−1XT .

Remaining issues:

how to construct control variates?

complexity is O(p3) if you take p covariates.

Nicolas Chopin JB3 discussion



The curious link between control variates and invariant
Markov processes

One way to obtain CVs to use the infinitesimal generator of a
process that leaves π invariant (e.g. Langevin in this talk).

Interestingly, you can also do the same with MCMC
(discrete-time) kernels; in particular Gibbs samplers such that
you are able to compute exactly E[ψ(Xt)|Xt−1 = x ]
(Dellaportas and Kontoyiannis, 2012).

You can very well use one kernel to generate your random
variables, and another kernel to construct control variates.

Another interesting area of investigation: taking into account
that your kernel does not simulate IID variables
(e.g. Belomestny et al, 2020).
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Conclusions

you don’t really need Stein method to construct control
variates:

1 you may use Markov process theory instead.

2 the fact the class uniquely characterises the distribution does
not seem to play any role.

Still the connection between CVs and Stein theory is neat, and
the latter seems useful in many other areas, as the speaker
showed us eloquently.

What about the O(n2) complexity however?
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