Discussion of Stein method in Bayesian computation

Nicolas Chopin

ENSAE, IPP (Institut Polytechnique de Paris)

• For lack of time (and expertise), I will focus on control variates.

- For lack of time (and expertise), I will focus on control variates.
- However, I will say a few words about the generality of Stein method near the end.

• The empirical mean: $\overline{Y} = N^{-1}(Y_1 + \ldots + Y_N)$.

• The empirical mean: $\overline{Y} = N^{-1}(Y_1 + \ldots + Y_N)$.

The OLS estimate corresponding to the following linear regression:

$$Y_n = \alpha + \beta X_n + \epsilon_n$$

where the ϵ_n are noise terms (zero mean).

• The empirical mean: $\overline{Y} = N^{-1}(Y_1 + \ldots + Y_N)$.

The OLS estimate corresponding to the following linear regression:

$$Y_n = \alpha + \beta X_n + \epsilon_n$$

where the ϵ_n are noise terms (zero mean).

• The empirical mean: $\overline{Y} = N^{-1}(Y_1 + \ldots + Y_N)$.

The OLS estimate corresponding to the following linear regression:

$$Y_n = \alpha + \beta X_n + \epsilon_n$$

where the ϵ_n are noise terms (zero mean).

By construction, estimate 2 always outperforms estimate 1. By how much?

• The empirical mean: $\overline{Y} = N^{-1}(Y_1 + \ldots + Y_N)$.

The OLS estimate corresponding to the following linear regression:

$$Y_n = \alpha + \beta X_n + \epsilon_n$$

where the ϵ_n are noise terms (zero mean).

By construction, estimate 2 always outperforms estimate 1. By how much?

Look at the R^2 .

 replace the X_n by vectors of dimension p: multivariate regression. Note the O(p³) complexity.

- replace the X_n by vectors of dimension p: multivariate regression. Note the $\mathcal{O}(p^3)$ complexity.
- Automatically choose certain components: Lasso.

- replace the X_n by vectors of dimension p: multivariate regression. Note the $\mathcal{O}(p^3)$ complexity.
- Automatically choose certain components: Lasso.
- Extension: non-parametric regression.

(

Suppose you have any algorithm that generate random variables $\Theta_1, \ldots, \Theta_N$ according to e.g. a posterior distribution $\pi(d\theta)$. Ignore the fact they not be IID. Then:

1 Take
$$Y_n = \varphi(\Theta_n)$$
 for any $\varphi : \Theta \to \mathbb{R}$ of interest;

Suppose you have any algorithm that generate random variables $\Theta_1, \ldots, \Theta_N$ according to e.g. a posterior distribution $\pi(d\theta)$. Ignore the fact they not be IID. Then:

- Take $Y_n = \varphi(\Theta_n)$ for any $\varphi : \Theta \to \mathbb{R}$ of interest;
- Find "by-products" X_n of the Θ_n 's, which have expectation zero.

Suppose you have any algorithm that generate random variables $\Theta_1, \ldots, \Theta_N$ according to e.g. a posterior distribution $\pi(d\theta)$. Ignore the fact they not be IID. Then:

1 Take
$$Y_n = \varphi(\Theta_n)$$
 for any $\varphi : \Theta \to \mathbb{R}$ of interest;

- **2** Find "by-products" X_n of the Θ_n 's, which have expectation zero.
- Iinear regression.

However, this is a silly argument. The OLS estimate is:

$$\beta_{\rm OLS} = (X^T X)^{-1} X^T Y$$

and the only φ -dependent part is Y: pre-compute $(X^T X)^{-1} X^T$.

However, this is a silly argument. The OLS estimate is:

$$\beta_{\rm OLS} = (X^T X)^{-1} X^T Y$$

and the only φ -dependent part is Y: pre-compute $(X^T X)^{-1} X^T$. Remaining issues:

• how to construct control variates?

However, this is a silly argument. The OLS estimate is:

$$\beta_{\rm OLS} = (X^T X)^{-1} X^T Y$$

and the only φ -dependent part is Y: pre-compute $(X^T X)^{-1} X^T$. Remaining issues:

- how to construct control variates?
- complexity is $\mathcal{O}(p^3)$ if you take p covariates.

The curious link between control variates and invariant Markov processes

• One way to obtain CVs to use the infinitesimal generator of a process that leaves π invariant (e.g. Langevin in this talk).

The curious link between control variates and invariant Markov processes

- One way to obtain CVs to use the infinitesimal generator of a process that leaves π invariant (e.g. Langevin in this talk).
- Interestingly, you can also do the same with MCMC (discrete-time) kernels; in particular Gibbs samplers such that you are able to compute exactly $\mathbb{E}[\psi(X_t)|X_{t-1} = x]$ (Dellaportas and Kontoyiannis, 2012).

The curious link between control variates and invariant Markov processes

- One way to obtain CVs to use the infinitesimal generator of a process that leaves π invariant (e.g. Langevin in this talk).
- Interestingly, you can also do the same with MCMC (discrete-time) kernels; in particular Gibbs samplers such that you are able to compute exactly $\mathbb{E}[\psi(X_t)|X_{t-1} = x]$ (Dellaportas and Kontoyiannis, 2012).
- You can very well use one kernel to generate your random variables, and another kernel to construct control variates.

The curious link between control variates and invariant Markov processes

- One way to obtain CVs to use the infinitesimal generator of a process that leaves π invariant (e.g. Langevin in this talk).
- Interestingly, you can also do the same with MCMC (discrete-time) kernels; in particular Gibbs samplers such that you are able to compute exactly $\mathbb{E}[\psi(X_t)|X_{t-1} = x]$ (Dellaportas and Kontoyiannis, 2012).
- You can very well use one kernel to generate your random variables, and another kernel to construct control variates.
- Another interesting area of investigation: taking into account that your kernel does not simulate IID variables (e.g. Belomestny et al, 2020).

• you don't really *need* Stein method to construct control variates:

- you don't really *need* Stein method to construct control variates:
 - you may use Markov process theory instead.

- you don't really *need* Stein method to construct control variates:
 - you may use Markov process theory instead.
 - the fact the class uniquely characterises the distribution does not seem to play any role.

- you don't really *need* Stein method to construct control variates:
 - you may use Markov process theory instead.
 - the fact the class uniquely characterises the distribution does not seem to play any role.
- Still the connection between CVs and Stein theory is neat, and the latter seems useful in many other areas, as the speaker showed us eloquently.

- you don't really *need* Stein method to construct control variates:
 - you may use Markov process theory instead.
 - the fact the class uniquely characterises the distribution does not seem to play any role.
- Still the connection between CVs and Stein theory is neat, and the latter seems useful in many other areas, as the speaker showed us eloquently.
- What about the $\mathcal{O}(n^2)$ complexity however?