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Problem setup

Suppose that πT is a Lebesgue density on E = Rd, expressed

πT (x) =
γT (x)

ZT
, ZT =

∫
E

γT (x)dx.

We want to calculate

I expectations with respect to πT ,

I the unknown normalizing constant ZT .

Can only evaluate γT (and later, ∇ log γT ) pointwise.



A stylized Monte Carlo problem

Suppose we can sample x0 from and evaluate the density of π0.

Choose and sample a Markov kernel xT ∼MT (x0,dxT ) such that
qT = L(xT ) is closer to πT than π0.

We want to use qT as the proposal in importance sampling.

Two challenges:

1. How do we choose MT ?

2. The density of qT is typically intractable.
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Second challenge

Extend the domain of integration to E2:

I Define QQQ(dx0,dxT ) = π0(dx0)MT (x0,dxT ).

I Choose an auxiliary “backward” kernel L0 and define the
auxiliary target PPP(dx0,dxT ) = πT (dxT )L0(xT ,dx0),

such that P� Q and w0,T (x0, xT ) = dL0⊗γT
dπ0⊗MT

(x0, xT ) can be
evaluated pointwise.

If (xn0 , x
n
T ) ∼ Q and wn0,T = w0,T (xn0 , x

n
T ), then

{
xnT ,w

n
0,T

}N
n=1

I is a weighted sample from πT , and

I ẐT = N−1
∑N
n=1 w

n
0,T is an unbiased estimator of ZT .



First challenge

Main idea: Approximate M?
T corresponding to the Schrödinger

bridge between π0 and πT for a class of kernels.



The Schrödinger bridge problem

Given a reference distribution Q(dx0,dxT ) and marginal
constraints π0 and πT , find

S(dx0,dxT ) = argmin
h0=π0,hT=πT

KL(H|Q),

Remark:
Consider QQQψ(dx0,dxT ) = π0(dx0)Mψ

T (x0,dxT ), where ψ is a
strictly positive function, or policy, and

Mψ
T (x0,dxT ) =

ψ(xT )MT (x0,dxT )∫
E
ψ(xT )MT (x0,dxT )

.

Then, S(dx0,dxT ) = Qψ?(dx0,dxT ), where ψ? is the solution to a
Schrödinger equation.



Some notes

I Original formulation by Schrödinger in 1931: gas with very
large number of particles N .

I The modern formulation is derived by a large deviations
principle as N →∞, where the KL is the rate functional.

I Connection to optimal transport: Suppose Schrödinger’s
particles are Brownian with scale σ, denoted Qσ, then

lim
σ→0

σ2KL(Sσ|Qσ) = inf
γ0=π0,γT=πT

∫
E2

‖x0 − xT ‖2γ(dx0,dxT )

=W2
2 (π0, πT ).

I Important in computation, idea behind entropically
regularized optimal transport (Cuturi, 2013).

I We will use a formulation from optimal control which is
amenable to computation (Heng et al., 2019).



High-level algorithm to compute S(dx0, dxT )

Iterative proportional fitting (or Sinkhorn’s algorithm):

Let Q(0) = Q, and for i ≥ 1, define

P(i)(dx0,dxT ) = argmin
hT=πT

KL(H|Q(i−1)),

Q(i)(dx0,dxT ) = argmin
h0=π0

KL(H|P(i)).

Let S(2i+1) = P(i+1) and S(2i) = Q(i) for any i ≥ 0.

Remark: Given Q as the reference, P(1) is the optimal auxiliary
target in the sense of Del Moral et al. (2006).



Convergence of iterative proportional fitting

Rüschendorf (1995) shows that if there exists c > 0 such that

MT (x0,dxT ) ≥ cπT (dxT ), for π0-a.e. x0 ∈ E,

then SSS(i) converges to SSS in KL and TV as i→∞.

Proposition: For any ε > 0, IPF returns an S(i) that satisfies

KL(π0|s(i)
0 ) + KL(πT |s(i)

T ) < ε

in fewer than dKL(S|Q)/εe iterations.



IPF as policy refinement

Using the ψ-parameterization, it turns out that we can express

Q(i) = Qψ
(i)

,

for two sequences ψ(i) and φ(i), satisfying

φ(i)(xT ) =
dπT

dqψ
(i−1)

T

(xT ), ψ(i) = ψ(i−1) · φ(i).

The sequence ψ(i) → ψ? as i→∞.



IPF as policy refinement

For any H� Qψ such that hT = πT , we have that

dπT

dqψT
(xT ) =

∫
E

dH
dQψ

(x0, xT )Qψ(dx0|xT ).

If (x0, xT ) ∼ Qψ, then, conditional on xT , we have x0 ∼ Qψ(dx0|xT ).

Thus, if H(dx0,dxT ) = πT (dxT )Lψ0 (xT ,dx0), then wψ0,T (x0, xT ) is an

unbiased estimator of dπT
dqψT

(xT ).

I Can borrow ideas from conditional SMC to reduce variance.



Approximate IPF

Given
{
(xn0 , x

n
T )
}N
n=1

∼ QQQψ̂(i−1)

, approximate φ(i) with

φ̂(i) = argmin
f∈F

N∑
n=1

∣∣∣log f(xnT )− logRψ̂
(i−1)

(xnT )
∣∣∣2 ,

I F is a function class,

I Rψ̂
(i−1)

(xT ) is an estimator of dπT

dqψ̂
(i−1)

T

(xT ).



Choice of kernels and function classes

Restrictions: Must be able to

I sample from Qψ̂(i−1)

, i.e. sample from M ψ̂(i−1)

T ,

I evaluate wψ̂
(i−1)

0,T at the points
{

(xn0 , x
n
T )
}N
n=1
∼ Qψ̂(i−1)

.

Important example:

I the kernel MT (x0,dxT ) is Gaussian,

I the function class log F is the quadratic forms,

I approximate the optimal backward kernel L
(i)
0 , in the sense of

Del Moral et al. (2006), with similar regressions.



Toy example

Suppose π0 =N (0,I), πT =N (µT ,ΣT ), where

µT = (17.9, 17.9), ΣT =

(
0.40 0.24
0.24 0.40

)

Let MT be the kernel arising from an Euler-Maruyama
discretization of the Langevin diffusion

dXs =
1

2
∇ log πs(Xs)ds+ dWs, for s ∈ [0, τ ], X0 ∼ π0,

where (πs)s∈[0,τ ] is the geometric interpolation of π0 and πT .

Suppose we take τ = 2 and 40 steps of Euler-Maruyama, and i = 5
iterations of IPF.



Toy example: Illustration of first marginal



Sequential Schrödinger bridge sampling

Instead of targeting πT directly, we introduce an interpolation
{πt}Tt=0, for example

γt(xt) = π0(xt)
1−λtγT (xt)

λt , πt(xt) = γt(xt)/Zt,

where {λt}Tt=0 ⊂ [0, 1] is increasing, λ0 = 0 and λT = 1.

Introduce a sequence of Markov kernels {Mt}Tt=1, and let

Q(dx0:T ) = π0(dx0)

T∏
t=1

Mt(xt−1,dxt).



Sequential Schrödinger bridge sampling

Consider the multi-marginal Schrödinger bridge problem:

S(dx0:T ) = argmin
ht=πt, ∀ t∈{0,...,T}

KL(H|Q).

Proposition: Can be solved sequentially. Consider the sequence of
intermediate problems

St−1,t(dxt−1,dxt) = argmin
ht−1=πt−1,ht=πt

KL(Ht−1,t|Qt−1,t),

= πt−1(dxt−1)M
ψ?t
t (xt−1,dxt).

Then, SSS(dx0:T ) = π0(dx0)
∏∏∏T
t=1M

ψ?t
t (xt−1,dxt), where {ψ?t }Tt=1

similarly solve a set of Schrödinger equations.



Algorithm

Initialize {xn0 }Nn=1 ∼ π0. For each t = 1, . . . , T,

I Perform i iterations of approximate IPF to obtain

xnt ∼M
(i)
t (xnt−1,dx

n
t ) and

w
(i)
t−1,t(x

n
t−1, x

n
t ) =

dL
(i)
t−1 ⊗ γt

dγt−1 ⊗M (i)
t

(xnt−1, x
n
t ),

for n = 1, . . . , N .

Return {(xnT ,wn0:T )}Nn=1, where wn0:T =
∏T
t=1 w

(i)
t−1,t(x

n
t−1, x

n
t ).

Optional: Add resampling steps.



Generic choice of kernels

For t = 1, . . . , T , let Mt denote the t-th step of the Euler-Maruyama
discretization of Langevin diffusion:

dXs =
1

2
∇ log πs(Xs)ds+ dWs, for s ∈ [0, τ ], X0 ∼ π0.

Let log Ft be the quadratic forms, then Mψ
t is Gaussian for every

t and ψ.

Can similarly approximate the optimal backward kernels using
quadratic forms.



Small step-size regime

For sufficiently large τ and small step size h > 0, qt should provide a
reasonable approximation of πt.

For small h, we can also leverage flexible function classes by
approximating the underlying continuous-time SBP:

Mψ
t (xt−1,dxt) ≈ N

(
dxt;xt−1 + h

2∇ log πt(xt−1) + h∇ logψt(xt−1), hId
)
.

Continuous-time Schrödinger bridge problem:

Find (ψ?s )s∈[0,τ ] such that X0 ∼ π0,Xτ ∼ πT ,

dXs =
1

2
∇ log πs(Xs)ds+∇ logψs(Xs)ds+ dWs, for s ∈ [0, τ ],

and (ψ?s )s∈[0,τ ] minimizes
∫∫∫ τ

0
EEE‖∇ logψs(Xs)‖2ds.



Example: Linear Quadratic Gaussian

Prior: π0(dx0) = N (dx0; 0, I).

Log-likelihood: `(x) = −(y − x)>R−1(y − x)/2, observation y ∈ Rd,
symmetric positive definite R ∈ R2×2.

Posterior: πT (dxT ) = N (dxT ;µT , ΣT ) with ΣT =
(
Σ−1

0 +R−1
)−1

,

µT = ΣT
(
Σ−1

0 µ0 +R−1y
)
.

Parameters: y = (8, 8)>, R11 = R22 = 1, R12 = R21 = 0.8.



Example: Linear Quadratic Gaussian

Kernels: Discretized Langevin diffusion with h = 1/20.

Interpolation: τ = 2, T = 40, λt = t/T .

Function classes: If f ∈ Ft, then log f is quadratic.



Example: Linear Quadratic Gaussian

Plot: logW2(πt, q
(i)
t ) as a function of t, for different i ≥ 0.
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Left: Exact IPF. Right: SSB with N = 1, 000.



Example: Linear Quadratic Gaussian

Comparing the reference sampler with the SSB sampler for
N = 1, 000,

I The MSE of log ẐT obtained with reference sampler was
7396 times higher than the SSB estimator.

I The wall-clock time consumed by the SSB sampler was
7.4 times higher than the reference sampler.

SSB about 1,000 times more efficient in terms of MSE per unit of
computation time.



Example: 1D mixture

Target distribution: πT (dxT ) =
∑p
i=1 wiN (dxT ;µi, σ

2
i ).

Parameters: p = 3, µ = (−1.5, 0, 1.5), σ = (0.6, 0.15, 1.8),
w = (1/3, 1/3, 1/3).
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Example: 1D mixture

Kernels: Discretized Langevin diffusion with h = 1/50.

Interpolation: π0(dx0) = N (dx0; 0, 50), τ = 2, T = 100, λt = t2/T 2.

Function classes: If f ∈ Ft, then log f is a cubic smoothing spline
with 25 knots, estimated with smooth.spline in R.



Example: 1D mixture

For the SSB sampler and reference sampler with N = 500,

I The MSE of log ẐT obtained with the reference sampler was
53.4 times higher than the SSB estimator.

I The wall-clock time consumed by the SSB sampler was
17.8 times higher than the reference sampler.

SSB about 3 times more efficient in terms of MSE per unit of
computation time.



Example: Logistic regression

Data: Cleveland heart disease database, M = 297 individuals, each
with d = 20 binary and continuous covariates Xm.

Prior: Weakly informative prior from Gelman et al. (2008).

Log-likelihood: `(x) = y>Xx−
∑M
m=1 log(1 + exp(x>Xm)),

response variable y ∈ {0, 1}M , covariate matrix X ∈ RM×d.



Example: Logistic regression

Interpolation: τ = 2, T = 40, λt = t2/T 2.

Kernels: Discretized Langevin diffusion with h = 1/20.

Function classes: If f ∈ Ft, then log f(x) = x>Ax+ b>x+ c, where
A ∈ Rd×d is diagonal.



Example: Logistic regression

Over 100 repeated simulations with N = 4, 000, the average estimates
of logZT were

I SSB: −126.7 (sd = 0.09),

I Reference: −130.5 (sd = 2.7),



Summary

Using the SMC framework, we leverage approximations of
Schrödinger bridges to do Monte Carlo sampling.

Important features of the algorithm include

I iterative proportional fitting,

I function approximation,

I estimation of normalizing constants and Radon-Nikodym
derivatives.

Compared to a well-tuned reference processes, the SSB sampler
showed computational gains in a few simple examples.



Future directions

Extend the method to other kinds of kernels, e.g.

I Gibbs sampling,

I Kernels that utilize model structure in high dimensions.

Many theoretical aspects left to consider, e.g.

I Asymptotic properties in N , i and T ,

I Behavior of IPF with misspecified function classes.



Optimal transport and statistics

Ideas from optimal transport and related literatures has inspired
many recent methods and results in statistics.

Relatively small community using statistical ideas to learn about
optimal transport.

Example: Optimal transport from exchangeability.



Optimal transport from exchangeability

Optimal transport problem:

Given

I marginals µ on X and ν on Y,

I a cost function c : X× Y → [0,∞],

solve

min
γx=µ,γy=ν

∫
X×Y

c(x, y)γ(dx, dy),

and find the argmin.

Notably studied by Monge (1781) and Kantorovich (1942).



Optimal transport from exchangeability

Consider the following scheme:

I sample zk =
[
(xi, yi)

]k
i=1
∼ (µ⊗ ν)k,

I find M(zk) = argmin σ∈S(k)

∑k
i=1 c(xi, yσ(i)),

I sample σ̄ ∼ Unif{M(zk)},

I return z̄k =
[
(xi, yσ(i))

]k
i=1

=
[
(x̄i, ȳi)

]k
i=1

.

Define Γk = L(z̄k), which takes values on Ck = {z̄k : σid ∈M(z̄k)}.

Note that γ̂z̄k = 1
k

∑k
i=1 δ(x̄i,ȳi) ∈ OT(µ̂k, ν̂k).



Optimal transport from exchangeability

For every k ≥ 1, the rows of z̄k ∼ Γk are exchangeable.

By the Diaconis-Freedman theorem, one can derive a limit of Γk on
(X× Y)∞:

Γ (A) =

∫
γ∞(A)dL(γ),

where L(γ) is the weak limit of L(γ̂z̄k).

By stability results on optimal transport, we know that the limit
points of γ̂z̄k almost surely belong to OT(µ, ν).



Optimal transport from exchangeability

Hence, L(γ) takes values in OT(µ, ν), and

γ?(B) =

∫∫∫
OT(µ,ν)

γ(B)dL(γ)

is an optimal transport measure.



Thanks!


